viernes, 15 de agosto de 2014

NEWTON


Newton comparte con Leibniz el crédito por el desarrollo del cálculo integral y diferencial, que utilizó para formular sus leyes de la física. También contribuyó en otras áreas de la matemática, desarrollando el teorema del binomio y las fórmulas de Newton-Cotes.

Principales aportes de Newton
Desde finales de 1664 trabajó intensamente en diferentes problemas matemáticos. Abordó entonces el teorema del binomio.
Teorema generalizado del binomio (Newton)
 Isaac Newton generalizó la fórmula para tomar otros exponentes, considerando una serie infinita: 


 Donde r puede ser cualquier número complejo (en particular, r puede ser cualquier número real, no necesariamente positivo ni entero), y los coeficientes están dados por:


(el k = 0 es un producto vacío y por lo tanto, igual a 1; en el caso de k = 1 es igual a r, ya que los otros factores (r − 1), etc., no aparecen en ese caso).
Una forma útil pero no obvia para la potencia recíproca: 


La suma en converge y la igualdad es verdadera siempre que los números reales o complejos x e y sean suficientemente cercanos, en el sentido de que el valor absoluto | x/y | sea menor a uno.
 Calcular Binomio
Para calcular un Binomio de Newton estilo podemos hacer de forma sencilla: 

 Newton había descubierto los principios de su cálculo diferencial e integral hacia 1665-1666 y, durante el decenio siguiente, elaboró al menos tres enfoques diferentes de su nuevo análisis.

 Newton y Leibniz protagonizaron una agria polémica sobre la autoría del desarrollo de esta rama de la matemática. Los historiadores de la ciencia consideran que ambos desarrollaron el cálculo independientemente, si bien la notación de Leibniz era mejor y la formulación de Newton se aplicaba mejor a problemas prácticos. La polémica dividió aún más a los matemáticos británicos y continentales, sin embargo esta separación no fue tan profunda como para que Newton y Leibniz dejaran de intercambiar resultados.

CALCULO DIFERENCIAL

El cálculo diferencial es el estudio de la definición, propiedades, y aplicaciones de la derivada de una función, o lo que es lo mismo, la pendiente de la tangente a lo largo de su gráfica. El proceso de encontrar la derivada se llama derivación o diferenciación. Dada una función y un punto en su dominio, la derivada en ese punto es una forma de codificar el comportamiento a pequeña-escala de la función cerca del punto. Encontrando la derivada de una función para cada punto en su dominio, es posible producir una nueva función, llamada la “función derivada” o simplemente la “derivada” de la función original. En lenguaje técnico, la derivada es un operador lineal, el cual toma una función y devuelve una segunda función, de manera que para cada punto de la primera función, la segunda obtiene la pendiente a la tangente en ese punto.
 El concepto de derivada es fundamentalmente más avanzado que los conceptos encontrados en el álgebra.
 Para entender la derivada, los estudiantes deben aprender la notación matemática. En notación matemática, un símbolo común para la derivada de una función es una marca parecida a un acento o apostrofo llamada símbolo primo. Así la derivada de f es f′ (pronunciado "f prima"). En lo siguiente la segunda función es la derivada de la primera:
   

Si la entrada de la función representa el tiempo, entonces la derivada representa el cambio con respecto del tiempo. Por ejemplo, si “f” es una función que toma el tiempo como entrada y da la posición de la pelota en ese momento como salida, entonces la derivada de “f” es cuánto la posición está cambiando en el tiempo, esto es, es la velocidad de la pelota.

 Si la función es lineal (esto es, la gráfica de la función es una línea recta), entonces la función puede ser escrita de la forma y = mx + b, donde:   




 LEIBNIZ



fue el otro inventor del cálculo. Su descubrimiento fue posterior al de Newton, aunque Leibnitz fue el primero en publicar el invento. En 1673, luego de estudiar los tratados de Pascal, Leibnitz se convence que los problemas inversos de tangentes y los de cuadraturas eran equivalentes.   Alejándose de estos problemas, a partir de sumas y diferencias de sucesiones comienza a desarrollar toda una teoría de sumas y diferencias infinitesimales que acabarían en la gestación de su cálculo
 
Leibniz fue entonces impresionante, ya que
 le llevó al descubrimiento del cálculo en 1675 y su elaboración y publicación en dos cortos artículos del Acta Eruditorum después en 1684
 y 1686, el primero sobre cálculo diferencial y el segundo sobre cálculo integral., las reglas para la manipulación de los símbolos  "Descripción: y la diferencial. Esto refleja sus ideas filosóficas de buscar un lenguaje simbólico y operacional para representar los conceptos e ideas del pensamiento de tal manera que los razonamientos y argumentos se puedan escribir por símbolos y fórmulas.
  
En Leibnizl interés no era la aplicación física. De hecho, se podría establecer una correlación entre infinitesimales y "mónadas'', estos últimos entes primarios en la descripción de lo real según la filosofía que aparece en su libro de filosofía (metafísica) Monadología.


El énfasis de Newton era la razón de cambio, mientras que en Leibniz lo era la suma infinita de infinitesimales.

En la historia del cálculo se encuentra la controversia de quién fue el inventor del cálculo, si Newton o Leibniz, algunos le dan la primicia a Newton y otros a Leibniz, pero se generaliza que Newton tuvo primero las ideas y que Leibniz las descubrió igualmente algunos años más tarde. Pero sin duda Leibniz merece igual crédito que Newton, por lo tanto sus aportaciones al cálculo fueron sobresalientes. Leibniz estableció la resolución de los problemas para los máximos y los mínimos, así como de las tangentes, esto dentro del cálculo diferencial; dentro del cálculo integral logró la resolución del problema para hallar la curva cuya subtangente es constante. Expuso los principios del cálculo infinitesimal, resolviendo el problema de la isócrona (ver biografía de Bernoulli) y de algunas otras aplicaciones mecánicas, utilizando ecuaciones diferenciales.

No cabe duda que su mayor aportación fue el nombre de cálculo diferencial e integral, así como la invención de símbolos matemáticos para la mejor explicación del cálculo, como el signo = (igual), así como su notación para las derivadas dx/dy, y su notación para las integrales.







DE LA CRUZ PIZANO GILBERTO
HERNANDEZ CANO GABRIELA
ROSALES FELICIANO MONICA IVETTE